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Abstract—The Numbers Round in the British television show 

Countdown is an interesting mathematical puzzle where players 

use a set of random numbers and arithmetic operations to reach a 

target value. This study focuses on the selection strategy involving 

"four large numbers" in the game and its impact on solvability. 

Using principles of discrete mathematics, we analyze the 

probability distribution of solvable targets, the combinatorial 

structure of number arrangements, and the complexity of 

achieving exact solutions. The findings contribute to a deeper 

understanding of strategic selection in mathematical games, 

providing insights into problem-solving and optimization 

techniques. 

 

Keywords—Countdown numbers round, combinatorical 

analysis, brute force. 

 

 

I.   INTRODUCTION 

The British television show Countdown is a mathematically 

intriguing game. In the show, two contestants play two types of 

round, called the letters and numbers round. This paper will 

consider a specific strategy in the numbers round. 

In the numbers round, contestants try to reach a randomly 

generated three-digit figure by using basic arithmetical 

operations on a given selection of numbers. A contestant has 

some control over the selection of numbers. The numbers are 

divided into two groups: 20 “small numbers” consisting two of 

each of 1 to 10, and 4 “large numbers” consisting of the numbers 

25, 50, 75, and 100. The contestant may specify how many 

“large numbers” are to be used, from none to all four, and then 

the remaining “small numbers” are picked for a total of six 

numbers. 

 

Fig. 1 Numbers round board. A target of 200 is shown with the randomly 

picked numbers below it. 

The contestants only ever has control over how many large 

numbers they desire. The numbers are picked randomly and the 

three-digit figure is also randomly generated. A contestant may 

have a preference as to how many large numbers to pick, each 

with its own strategy. One such selection is the four large 

selection. 

By picking four large, the randomness in the selection is 

reduced as there are only four large numbers. The contestants 

effectively always know what four of the six numbers selection 

are. This selection has relatively smaller number of possible 

combination of selection.  

Although this selection is relatively predictable, operating 

large numbers can be unwieldy and harder to fine tune in the 

sense that it is harder to reach a specific target. The strategy 

surrounding four large is deemed as being more mechanical [1]. 

 

Fig. 2 A numbers round with four large selection. A mathematical calculation, 

demonstrated by presenter Carol Vorderman, is shown where the target 813 is 

reached by using all six given numbers (the number 100 is used in the last step 

as division). Image source: Channel 4. 

Also of theoretical interest is the solvability of numbers round 

puzzles. There may be targets with which no possible numbers 

combination can provide an exact solution, or targets that 

require specific small numbers.  

Another thing to note is that if no contestants found an exact 

solution, scores can still be given to whoever found a solution 

that is closest to the target. One may compare the viability of 

different selection strategy on each particular target by 

comparing the average of closest solutions for every possible 

selection, though no comparison will be made in this paper. 

 

II.  METHODOLOGY 

In a four large selection, the remaining two numbers are 

randomly picked from 20 small numbers(two copies of numbers 

1 to 10). This results in total possible selections of 
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(
20
2

) = 55 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠. 

This is a relatively small amount of combinations. Picking six 

smalls or three large generates up to (20
6

) = 38760 and 

(20
3

)(4
3
) = 3420 combinations respectively. The limited amount 

of possible combinations and the ability to know four of the six 

numbers beforehand leads to a more predictable solution. There 

are tricks and strategies built around solving four large [1]. 

Strategies may incorporate numbers that are reachable by the 

four large numbers. The four large numbers spans, or in other 

words can reach by arithmetical operations, these 73 numbers: 
1, 2, 3, 4, 5, 6, 7, 9, 18, 20, 21, 23, 25, 27, 29, 30, 
34, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 57, 67, 69 

71, 73, 75, 77, 79, 81, 95, 97, 98, 99, 100, 101, 102 

103, 105, 121, 125, 129, 146, 147, 150, 153, 154, 173 

175, 177, 197, 200, 203, 225, 250, 275, 298, 300, 302 

350, 450, 500, 525, 575, 625, 675, 725. 

All these numbers can be reached by using 25, 50, 75, and 

100. In particular, there are 33 numbers (in the range 100-725) 

which are valid targets, guaranteeing an exact solution. 

The span of a group of numbers can be computed by a method 

that will be shown. How the introduction of two additional small 

numbers affect the span and in turn the solvability of numbers 

round will be investigated. 

A. Representation of Arithmetical Expression 

An arithmetical expression can be represented as an 

expression tree. 

 

Fig. 3 Examples of expression trees. The tree on the left evaluates to 

(9+25)*10 whereas the tree on the right evaluates to (75/25)*(50-3). Note the 

order of operation. 

In an expression tree, all the leaf nodes are numbers, whereas 

any other nodes are operators. All operator nodes always have 

two children, the left and right subtree, if the tree has only binary 

operators. This is the case for Countdown numbers round, where 

the allowed operations are addition, subtraction, multiplication, 

and division. Expression trees in the current context will always 

be a full binary tree. 

B. Brute Force by Enumeration of Expression Tree 

To solve a numbers round, a brute force method can be used 

to find a solution. Brute forces are inefficient and there are 

better, more efficient method. [2, 3] However, such method can 

still determine the existence of an exact solution. The span of a 

given group of numbers can be found by exhaustively 

generating and evaluating all possible arithmetical expression. 

 

Fig. 4 Illustration of the generations of expression trees based on the four 

large numbers. A generation of trees are constructed by iteratively composing 

trees from previous generations until all leaf nodes are used. Multiple trees 

with the same structure is generated with differing internal nodes to enumerate 

all possible operations. 

The brute force method starts by generating expression trees 

that only consists of one node representing the values of the 

given numbers. Then the next generation of trees are produced 

by pairing two trees as the subtrees of newly trees. The roots of 

the new trees are operators, denoting an expression involving 

the left subtree and right subtree as operands. To form an 

expression tree that uses 𝑛 numbers, pair trees that uses 𝑛 − 1 

numbers with trees that uses 1 number, 𝑛 − 2 numbers trees 

with 2 numbers trees, and etc. For each unique tree structure, 

permute all possible operators. Since the numbers can only be 

used once, the pairing of trees must check if any of their 

component numbers overlap. 

The number of possible arithmetical expressions using 𝑛 

numbers  is equivalent to the number of all full binary tree with 

𝑛 leaf nodes. 𝐶𝑛−1 is the number of full binary trees with 𝑛 

leaves [4]. 𝐶𝑛 is the 𝑛-th Catalan number where 

𝐶𝑛 =
1

1 + 𝑛
(

2𝑛
𝑛

). 

 The amount of all expression trees that uses at most 6 

numbers is then   

∑ 𝐶𝑛−1

6!

(6 − 𝑛)!
4𝑛−1 =

6

1

33 665 406. 

 

This amount does not account for illegal operations. 

Countdown prohibits non-integral division and negative 

integers even as intermediary result, so the amount of legal 

expression trees is fewer. 

The span can be computed by evaluating all of the generated 

trees. Multiple trees may evaluate to the same value, but those 

do not affect the span as it only considers unique value. 

  

III.   IMPLEMENTATION 

A computer program is used to find the results. The brute 

force technique starts by generating expression trees. The 

expression tree data structure is implemented as the following 

class: 
Class Tree: 

  def __init__(self, value, left=None, right=None): 

  self.value = value  # Integer or one of [‘+’, ‘-‘, 

‘*’, ‘/’] 

  self.left = left 

  self.right = right 

         

  # Bitmask. Showing which numbers are used in this 

tree 

  if self.left is not None and self.right is not None: 

    self.component = left.component | right.component 

  else: 

    self.component = 0 
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The implementation is fairly standard, with the additional 

attribute of component. Since each given number can only be 

used once, tree generation must consider the numbers that are 

used when composing trees. The component attribute is used 

with bitwise operators and treated as a sequence of bits. Set bit 

on the rightmost bit means the rightmost given numbers is used 

on the expression tree. 

To generate the trees, the following generator function is 

used.  
def all_possible_trees(numbers): 

  trees = {i: [] for i in range(1, len(numbers) + 1)} 

     

 

  # Initialize trees with a single leaf node 

  for i in range(len(numbers)): 

  leaf = Tree(numbers[i]) 

  leaf.component = 1 << i 

  trees[1].append(leaf) 

   

  operators = ['+', '-', '*', '/'] 

     

# Iteratively build trees with more leaf nodes 

for i in range(2, len(numbers) + 1): 

  for j in range(1, i): 

    for left_tree in trees[j]: 

      for right_tree in trees[i - j]: 

        if left_tree.component & right_tree.component 

!= 0: 

          continue 

        for op in operators: 

          new_tree = Tree(op, left_tree, right_tree) 

          trees[i].append(new_tree) 

          yield new_tree 

The generator stores previously generated trees. Initially, the 

base trees that each only contains one node denoting each given 

numbers are created. The component attribute is set using the 

bitwise left shift operation. Each generation of trees has one 

more leaf nodes than the previous generation. The 𝑛-th 

generation tree is generated by pairing trees from previous 

generations whose number of leaves amount to 𝑛. A pairing of 

trees only generate a new tree if the components used in the two 

expression trees are different.  

By using the generator, the span of a set of numbers can be 

computed. To save on computation time, since there are more 

than one set of numbers to compute the span of, only one set of 

all possible trees are generated. By using “template trees”, the 

computation of span does not need to generate the expression 

trees every time. Regardless of the actual numbers used, the 

structure remain the same in all expression trees. To evaluate the 

trees, the actual numbers are simply substituted into each 

placeholder value used in the tree generation. Only a subset of 

the span lying in the range 100-999 is of interest as it 

corresponds to the range of target number. 
def express(self, replace_placeholder={}): 

  if self.left is None and self.right is None: 

    # Leaf node 

  if self.value in replace_placeholder.keys(): 

    return str(replace_placeholder[self.value]) 

  else: 

    return str(self.value) 

else: 

  if self.value in ['-', '/'] and 

self.left.evaluate(replace_placeholder) < 

self.right.evaluate(replace_placeholder): 

    return 

f"({self.right.express(replace_placeholder)}{self.value}{

self.left.express(replace_placeholder)})" 

    else: 

      return 

f"({self.left.express(replace_placeholder)}{self.value}{s

elf.right.express(replace_placeholder)})" 

 

def get_numbers_span(numbers, min=-1, max=-1, 

replace_placeholder={}, template_trees=None): 

  span = {} 

     

if template_trees is None: 

  trees = list(all_possible_trees(numbers)) 

else: 

  trees = template_trees 

 

for tree in trees: 

  result = tree.evaluate(replace_placeholder) 

  if result <= 0: 

    continue 

  if min!=-1 and max!=-1 and not (min<=result<=max): 

    continue 

 

  if result not in span.keys(): 

    span[result] = tree     # Prevent overriding by more 

complex trees that have the same result 

 

  sortedSpan = dict(sorted(span.items())) 

  return sortedSpan 

The implemented tree does not compute what value the 

expression tree evaluates to at generation. Any computation is 

done only when needed. This way, a “template  tree” can be used 

effectively as any tree having the same structure but the numbers 

changed. The Tree class has the following evaluate method 
def evaluate(self, replace_placeholder={}): 

  if self.left is None and self.right is None: 

  # Leaf node 

  if self.value in replace_placeholder.keys(): 

    return replace_placeholder[self.value] 

  return self.value 

 

  left = self.left.evaluate(replace_placeholder) 

  right = self.right.evaluate(replace_placeholder) 

  if left==-1 or right==-1: 

  # Invalid tree 

    return -1 

 

  if self.value=='+': 

  return left + right 

  if self.value=='-': 

  return abs(left-right) 

  if self.value=='*': 

  return left * right 

if self.value=='/': 

  if left<right: 

    left, right = right, left 

  if right==0 or (left%right!=0): 

    return -1 

  return left // right 

 

  return -1 

The method returns the value -1 if any illegal operation is found 

in the expression tree or its subtree. This is a consequence of the 

generator function not checking the actual generated tree. The 

method is commutative even if the operators are not. Thus the 

position of left subtree or right subtree does not matter. 

All analysis uses these basic functions. Analysis is done using 

a jupyter notebook. The span for each selections are first 

computed and then stored for use. The notebook used to 

generate the results is available on the linked repository in the 

appendix. 
# Compute spans of all four large selections 

print("Generating all possible trees...") 

template_trees = list(all_possible_trees(large_numbers+[1, 

2])) 

 

print("Computing span...") 

small_numbers_combinations = [(i, i) for i in 

small_numbers] 

small_numbers_combinations += 

list(itertools.combinations(small_numbers, 2)) 

 

for small1, small2 in small_numbers_combinations: 
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  if 

os.path.exists(f'data/span/{small1}_{small2}_span.txt'): 

  continue 

 

replace_dict = {1: small1, 2: small2} 

print(f"Computing span for {small1}, {small2} ...") 

 

span = get_numbers_span(large_numbers+[small1, small2], 

min=100, max=999, 

replace_placeholder=replace_dict,template_trees=template_

trees) 

     

res = [] 

for v, t in span.items(): 

  res.append([v, t.express(replace_dict)]) 

res = np.array(res) 

   np.savetxt(f'data/span/{small1}_{small2}_span.txt', 

res, fmt='%s') 

The spans are computed for each selection by substituting the 

different small numbers into the “template trees”. This 

computation is time-intensive so the result is stored in a text file. 

 

IV.   RESULTS 

A. Selection Solvability  

By computing the spans of all four large selections, the 

amount of targets that has exact solutions for each particular 

selection can be found. This is computationally feasible because 

the small number of four large selections. 
Table I. Table of all four large selection along with the number of targets that 

are reachable by the solution. 
Small Numbers 

1 

Small Numbers 

2 

Reachable 

Targets 

 Small Numbers 

1 

Small Numbers 

2 

Reachable 

Targets 

1 1 325  3 9 846 

2 2 545  3 10 848 

1 2 580  4 8 852 

4 4 680  5 6 852 

1 3 682  7 10 854 

5 5 684  5 8 859 

10 10 707  3 7 860 

3 3 710  6 10 864 

1 4 717  7 8 865 

5 10 738  4 9 867 

7 7 742  8 10 867 

2 4 755  6 8 868 

1 5 760  7 9 869 

2 5 771  5 9 871 

1 7 773  9 10 871 

2 3 774  6 9 872 

1 6 789  6 7 873 

6 6 790  3 8 876 

8 8 790  8 9 886 

2 10 795  5 6 852 

2 6 808  7 10 854 

1 8 812  5 8 859 

9 9 816  3 7 860 

3 5 816  6 10 864 

3 4 817  7 8 865 

1 10 828  4 9 867 

4 7 828  8 10 867 

2 7 829  6 8 868 

4 5 829  7 9 869 

3 6 832  5 9 871 

2 8 833  9 10 871 

1 9 834  6 9 872 

5 7 837  6 7 873 

4 10 838  3 8 876 

4 6 839  8 9 886 

2 9 842     

 

Notice that the selection with (1, 1) small numbers has the 

fewest number of exact solves with only 325 targets. On 

average, a four large selection can exactly solves 798 targets. 

Selections other than the (1, 1) selection can exactly solve over 

half of valid targets.  

 

Fig. 5 Scatter plot showing the variation between combination of small 

numbers. 

B.Target Solvability 

Now the solvability for each target will be considered. It is 

possible that a certain target does not have an exact solution. In 

that case, the closest solution is considered.  

It is found that the target that has the least amount of selection 

with which an exact solution can be found is the target 839 with 

only 22 selections that has the target in their span. There are 203 

out of 900 targets that are always exactly solvable on all 55 four 

large selection. These targets are shown in the list below. 
100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 
124, 125, 126, 127, 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148,  
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 160, 162, 167, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,  
180,183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204,  
205, 206, 207, 208, 210, 211, 222, 223, 225, 226, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256,  
258, 267, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 292, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303,  
304, 305, 306, 308, 310, 322, 324, 325, 326, 328, 336, 342, 344, 346, 347, 348, 350, 352, 353, 354, 356, 357, 364, 
372,375, 376, 378, 396, 397, 399, 400, 403, 404, 406, 425, 446, 450, 453, 454, 456, 475, 492, 496, 500, 504, 525, 
550,575, 600, 624, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, 900, 925, 938, 950, 975 

However, Countdown numbers rounds still reward non-exact 

solution if no contestant found an exact one, in which case the 

solution that is closest to the target wins however. The 

solvability of a target in a selection strategy can be described as 

the average of closest solutions for all selections. This metric 

directly translates to point-scoring ability. The following 

heatmap show the average of solutions closeness for each 900 

targets. 

 

Fig. 6 Heatmap of average difference of best solution across all four large 

selections for each target 100-999. Targets that are always exactly solvable has 

a closeness value of 0. 
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Closeness is measured as the difference between closest 

solution to the target. Exact solution has closeness of 0.  

The heatmap above shows that smaller targets often have 

more exact solves. Also notice that the heatmap is divided into 

four bands, separated by targets that are close to ending with 25, 

50, or 75. This is what was meant by four large selection being 

harder to fine tune. 

Having more large numbers makes reaching higher targets 

easier, but the introduction of small numbers offers minute 

adjustment that widen the span of the numbers. Four large 

selection can easily reach targets that are multiples of 25 or 

within a small range around those numbers. Targets that are not 

close to multiples of 25 still have exact solutions, but only on 

slightly fewer selections. 

 

C. Computer Simulation 

A more direct way of measuring the viability of four large 

selection is by simulating many countdown numbers rounds. 

The simulation is done by randomly generating the target and 

small numbers, and calculate the score using the best solution 

possible. Prerviously, the spans of all selections are already 

calculated. Scoring is done based on whether the target is within 

the selection’s span or whatever closest number is in the span.  

In Countdown, an exact solution gives 10 points. Inexact 

solution gives 10 points subtracted by the difference between the 

solution and the target. A computer simulation produced the 

following result: 

 

 

Fig. 7 Python code that simulates a certain amount of numbers round. The 

average score obtained by picking four large is estimated to be approximately 

9.9. 

 

V.   REFLECTION AND DISCUSSION 

So far, this paper only discusses the solvability of four-large 

selection in numbers rounds without much comparison to other 

selection strategy. It is not possible to say whether four large is 

specifically better than others. Perhaps more research can be 

done on this matter.  

Although algorithmical complexity is not the main interest in 

this paper, the code that is used to produce the result is far from 

perfect. There are many cases where the code can be improved 

which may improve computation time. Computing the span of 

55 selections has taken roughly one hour of time. Generating all 

expression trees took about one minute. However, finding a 

solution for a solvable puzzle takes a surprisingly reasonable 

amount of time.  

For example, the generation of trees produce expressions that 

are not legal in the Countdown numbers round such as non-

integral division. A massive possible optimization is gained by 

utilizing the commutativity of operations. Currently, the 

generator simply permutes the leaf nodes, resulting in duplicate 

expression where only the operands got switched around 

operators such as addition. These problems does not affect the 

results in any way.  

Modelling arithmetical expression as binary tree turned out to 

be better and is more natural. A previous attempt tries to use a 

list of numbers and operators to represent an expression. To 

enumerate all expressions, the members of the list are permuted. 

Then the expression can be evaluated by using a stack. This 

approach is abandoned halfway due to slow performance.  

 

VI.   CONCLUSION 

Four-large selection is a sound strategy in Countdown 

numbers round. The majority of target and selection 

combination has either exact or close solutions. 

Whether a solution is obvious to the human contestant is not 

considered in this paper. Comparison to other selection strategy 

is due. 

 

VI.   APPENDIX 

All code that is used to generate the results in this paper is 

hosted on a GitHub repository. The raw results data is stored 

under the data subdirectory. The data can be reproduced by 

running the python notebook found in the repository. At time of 

writing, the repository is in the state referenced by the v1.0 tag. 

The link to the repository is given below: 

https://github.com/rizalkhairan/countdown 
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