
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Analysis of Four-Large-Numbers Selection in the

Countdown Numbers Round and Its Solvability

Syahrizal Bani Khairan - 135230631

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1syahrizal.khairan@gmail.com, 13523063@std.stei.itb.ac.id

Abstract—The Numbers Round in the British television show

Countdown is an interesting mathematical puzzle where players

use a set of random numbers and arithmetic operations to reach a

target value. This study focuses on the selection strategy involving

"four large numbers" in the game and its impact on solvability.

Using principles of discrete mathematics, we analyze the

probability distribution of solvable targets, the combinatorial

structure of number arrangements, and the complexity of

achieving exact solutions. The findings contribute to a deeper

understanding of strategic selection in mathematical games,

providing insights into problem-solving and optimization

techniques.

Keywords—Countdown numbers round, combinatorical

analysis, brute force.

I. INTRODUCTION

The British television show Countdown is a mathematically

intriguing game. In the show, two contestants play two types of

round, called the letters and numbers round. This paper will

consider a specific strategy in the numbers round.

In the numbers round, contestants try to reach a randomly

generated three-digit figure by using basic arithmetical

operations on a given selection of numbers. A contestant has

some control over the selection of numbers. The numbers are

divided into two groups: 20 “small numbers” consisting two of

each of 1 to 10, and 4 “large numbers” consisting of the numbers

25, 50, 75, and 100. The contestant may specify how many

“large numbers” are to be used, from none to all four, and then

the remaining “small numbers” are picked for a total of six

numbers.

Fig. 1 Numbers round board. A target of 200 is shown with the randomly

picked numbers below it.

The contestants only ever has control over how many large

numbers they desire. The numbers are picked randomly and the

three-digit figure is also randomly generated. A contestant may

have a preference as to how many large numbers to pick, each

with its own strategy. One such selection is the four large

selection.

By picking four large, the randomness in the selection is

reduced as there are only four large numbers. The contestants

effectively always know what four of the six numbers selection

are. This selection has relatively smaller number of possible

combination of selection.

Although this selection is relatively predictable, operating

large numbers can be unwieldy and harder to fine tune in the

sense that it is harder to reach a specific target. The strategy

surrounding four large is deemed as being more mechanical [1].

Fig. 2 A numbers round with four large selection. A mathematical calculation,

demonstrated by presenter Carol Vorderman, is shown where the target 813 is

reached by using all six given numbers (the number 100 is used in the last step

as division). Image source: Channel 4.

Also of theoretical interest is the solvability of numbers round

puzzles. There may be targets with which no possible numbers

combination can provide an exact solution, or targets that

require specific small numbers.

Another thing to note is that if no contestants found an exact

solution, scores can still be given to whoever found a solution

that is closest to the target. One may compare the viability of

different selection strategy on each particular target by

comparing the average of closest solutions for every possible

selection, though no comparison will be made in this paper.

II. METHODOLOGY

In a four large selection, the remaining two numbers are

randomly picked from 20 small numbers(two copies of numbers

1 to 10). This results in total possible selections of

mailto:1syahrizal.khairan@gmail.com
mailto:13523063@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

(
20
2

) = 55 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠.

This is a relatively small amount of combinations. Picking six

smalls or three large generates up to (20
6

) = 38760 and

(20
3

)(4
3
) = 3420 combinations respectively. The limited amount

of possible combinations and the ability to know four of the six

numbers beforehand leads to a more predictable solution. There

are tricks and strategies built around solving four large [1].

Strategies may incorporate numbers that are reachable by the

four large numbers. The four large numbers spans, or in other

words can reach by arithmetical operations, these 73 numbers:
1, 2, 3, 4, 5, 6, 7, 9, 18, 20, 21, 23, 25, 27, 29, 30,
34, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 57, 67, 69

71, 73, 75, 77, 79, 81, 95, 97, 98, 99, 100, 101, 102

103, 105, 121, 125, 129, 146, 147, 150, 153, 154, 173

175, 177, 197, 200, 203, 225, 250, 275, 298, 300, 302

350, 450, 500, 525, 575, 625, 675, 725.

All these numbers can be reached by using 25, 50, 75, and

100. In particular, there are 33 numbers (in the range 100-725)

which are valid targets, guaranteeing an exact solution.

The span of a group of numbers can be computed by a method

that will be shown. How the introduction of two additional small

numbers affect the span and in turn the solvability of numbers

round will be investigated.

A. Representation of Arithmetical Expression

An arithmetical expression can be represented as an

expression tree.

Fig. 3 Examples of expression trees. The tree on the left evaluates to

(9+25)*10 whereas the tree on the right evaluates to (75/25)*(50-3). Note the

order of operation.

In an expression tree, all the leaf nodes are numbers, whereas

any other nodes are operators. All operator nodes always have

two children, the left and right subtree, if the tree has only binary

operators. This is the case for Countdown numbers round, where

the allowed operations are addition, subtraction, multiplication,

and division. Expression trees in the current context will always

be a full binary tree.

B. Brute Force by Enumeration of Expression Tree

To solve a numbers round, a brute force method can be used

to find a solution. Brute forces are inefficient and there are

better, more efficient method. [2, 3] However, such method can

still determine the existence of an exact solution. The span of a

given group of numbers can be found by exhaustively

generating and evaluating all possible arithmetical expression.

Fig. 4 Illustration of the generations of expression trees based on the four

large numbers. A generation of trees are constructed by iteratively composing

trees from previous generations until all leaf nodes are used. Multiple trees

with the same structure is generated with differing internal nodes to enumerate

all possible operations.

The brute force method starts by generating expression trees

that only consists of one node representing the values of the

given numbers. Then the next generation of trees are produced

by pairing two trees as the subtrees of newly trees. The roots of

the new trees are operators, denoting an expression involving

the left subtree and right subtree as operands. To form an

expression tree that uses 𝑛 numbers, pair trees that uses 𝑛 − 1

numbers with trees that uses 1 number, 𝑛 − 2 numbers trees

with 2 numbers trees, and etc. For each unique tree structure,

permute all possible operators. Since the numbers can only be

used once, the pairing of trees must check if any of their

component numbers overlap.

The number of possible arithmetical expressions using 𝑛

numbers is equivalent to the number of all full binary tree with

𝑛 leaf nodes. 𝐶𝑛−1 is the number of full binary trees with 𝑛

leaves [4]. 𝐶𝑛 is the 𝑛-th Catalan number where

𝐶𝑛 =
1

1 + 𝑛
(

2𝑛
𝑛

).

 The amount of all expression trees that uses at most 6

numbers is then

∑ 𝐶𝑛−1

6!

(6 − 𝑛)!
4𝑛−1 =

6

1

33 665 406.

This amount does not account for illegal operations.

Countdown prohibits non-integral division and negative

integers even as intermediary result, so the amount of legal

expression trees is fewer.

The span can be computed by evaluating all of the generated

trees. Multiple trees may evaluate to the same value, but those

do not affect the span as it only considers unique value.

III. IMPLEMENTATION

A computer program is used to find the results. The brute

force technique starts by generating expression trees. The

expression tree data structure is implemented as the following

class:
Class Tree:

 def __init__(self, value, left=None, right=None):

 self.value = value # Integer or one of [‘+’, ‘-‘,

‘*’, ‘/’]

 self.left = left

 self.right = right

 # Bitmask. Showing which numbers are used in this

tree

 if self.left is not None and self.right is not None:

 self.component = left.component | right.component

 else:

 self.component = 0

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

The implementation is fairly standard, with the additional

attribute of component. Since each given number can only be

used once, tree generation must consider the numbers that are

used when composing trees. The component attribute is used

with bitwise operators and treated as a sequence of bits. Set bit

on the rightmost bit means the rightmost given numbers is used

on the expression tree.

To generate the trees, the following generator function is

used.
def all_possible_trees(numbers):

 trees = {i: [] for i in range(1, len(numbers) + 1)}

 # Initialize trees with a single leaf node

 for i in range(len(numbers)):

 leaf = Tree(numbers[i])

 leaf.component = 1 << i

 trees[1].append(leaf)

 operators = ['+', '-', '*', '/']

Iteratively build trees with more leaf nodes

for i in range(2, len(numbers) + 1):

 for j in range(1, i):

 for left_tree in trees[j]:

 for right_tree in trees[i - j]:

 if left_tree.component & right_tree.component

!= 0:

 continue

 for op in operators:

 new_tree = Tree(op, left_tree, right_tree)

 trees[i].append(new_tree)

 yield new_tree

The generator stores previously generated trees. Initially, the

base trees that each only contains one node denoting each given

numbers are created. The component attribute is set using the

bitwise left shift operation. Each generation of trees has one

more leaf nodes than the previous generation. The 𝑛-th

generation tree is generated by pairing trees from previous

generations whose number of leaves amount to 𝑛. A pairing of

trees only generate a new tree if the components used in the two

expression trees are different.

By using the generator, the span of a set of numbers can be

computed. To save on computation time, since there are more

than one set of numbers to compute the span of, only one set of

all possible trees are generated. By using “template trees”, the

computation of span does not need to generate the expression

trees every time. Regardless of the actual numbers used, the

structure remain the same in all expression trees. To evaluate the

trees, the actual numbers are simply substituted into each

placeholder value used in the tree generation. Only a subset of

the span lying in the range 100-999 is of interest as it

corresponds to the range of target number.
def express(self, replace_placeholder={}):

 if self.left is None and self.right is None:

 # Leaf node

 if self.value in replace_placeholder.keys():

 return str(replace_placeholder[self.value])

 else:

 return str(self.value)

else:

 if self.value in ['-', '/'] and

self.left.evaluate(replace_placeholder) <

self.right.evaluate(replace_placeholder):

 return

f"({self.right.express(replace_placeholder)}{self.value}{

self.left.express(replace_placeholder)})"

 else:

 return

f"({self.left.express(replace_placeholder)}{self.value}{s

elf.right.express(replace_placeholder)})"

def get_numbers_span(numbers, min=-1, max=-1,

replace_placeholder={}, template_trees=None):

 span = {}

if template_trees is None:

 trees = list(all_possible_trees(numbers))

else:

 trees = template_trees

for tree in trees:

 result = tree.evaluate(replace_placeholder)

 if result <= 0:

 continue

 if min!=-1 and max!=-1 and not (min<=result<=max):

 continue

 if result not in span.keys():

 span[result] = tree # Prevent overriding by more

complex trees that have the same result

 sortedSpan = dict(sorted(span.items()))

 return sortedSpan

The implemented tree does not compute what value the

expression tree evaluates to at generation. Any computation is

done only when needed. This way, a “template tree” can be used

effectively as any tree having the same structure but the numbers

changed. The Tree class has the following evaluate method
def evaluate(self, replace_placeholder={}):

 if self.left is None and self.right is None:

 # Leaf node

 if self.value in replace_placeholder.keys():

 return replace_placeholder[self.value]

 return self.value

 left = self.left.evaluate(replace_placeholder)

 right = self.right.evaluate(replace_placeholder)

 if left==-1 or right==-1:

 # Invalid tree

 return -1

 if self.value=='+':

 return left + right

 if self.value=='-':

 return abs(left-right)

 if self.value=='*':

 return left * right

if self.value=='/':

 if left<right:

 left, right = right, left

 if right==0 or (left%right!=0):

 return -1

 return left // right

 return -1

The method returns the value -1 if any illegal operation is found

in the expression tree or its subtree. This is a consequence of the

generator function not checking the actual generated tree. The

method is commutative even if the operators are not. Thus the

position of left subtree or right subtree does not matter.

All analysis uses these basic functions. Analysis is done using

a jupyter notebook. The span for each selections are first

computed and then stored for use. The notebook used to

generate the results is available on the linked repository in the

appendix.
Compute spans of all four large selections

print("Generating all possible trees...")

template_trees = list(all_possible_trees(large_numbers+[1,

2]))

print("Computing span...")

small_numbers_combinations = [(i, i) for i in

small_numbers]

small_numbers_combinations +=

list(itertools.combinations(small_numbers, 2))

for small1, small2 in small_numbers_combinations:

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

 if

os.path.exists(f'data/span/{small1}_{small2}_span.txt'):

 continue

replace_dict = {1: small1, 2: small2}

print(f"Computing span for {small1}, {small2} ...")

span = get_numbers_span(large_numbers+[small1, small2],

min=100, max=999,

replace_placeholder=replace_dict,template_trees=template_

trees)

res = []

for v, t in span.items():

 res.append([v, t.express(replace_dict)])

res = np.array(res)

 np.savetxt(f'data/span/{small1}_{small2}_span.txt',

res, fmt='%s')

The spans are computed for each selection by substituting the

different small numbers into the “template trees”. This

computation is time-intensive so the result is stored in a text file.

IV. RESULTS

A. Selection Solvability

By computing the spans of all four large selections, the

amount of targets that has exact solutions for each particular

selection can be found. This is computationally feasible because

the small number of four large selections.
Table I. Table of all four large selection along with the number of targets that

are reachable by the solution.
Small Numbers

1

Small Numbers

2

Reachable

Targets

 Small Numbers

1

Small Numbers

2

Reachable

Targets

1 1 325 3 9 846

2 2 545 3 10 848

1 2 580 4 8 852

4 4 680 5 6 852

1 3 682 7 10 854

5 5 684 5 8 859

10 10 707 3 7 860

3 3 710 6 10 864

1 4 717 7 8 865

5 10 738 4 9 867

7 7 742 8 10 867

2 4 755 6 8 868

1 5 760 7 9 869

2 5 771 5 9 871

1 7 773 9 10 871

2 3 774 6 9 872

1 6 789 6 7 873

6 6 790 3 8 876

8 8 790 8 9 886

2 10 795 5 6 852

2 6 808 7 10 854

1 8 812 5 8 859

9 9 816 3 7 860

3 5 816 6 10 864

3 4 817 7 8 865

1 10 828 4 9 867

4 7 828 8 10 867

2 7 829 6 8 868

4 5 829 7 9 869

3 6 832 5 9 871

2 8 833 9 10 871

1 9 834 6 9 872

5 7 837 6 7 873

4 10 838 3 8 876

4 6 839 8 9 886

2 9 842

Notice that the selection with (1, 1) small numbers has the

fewest number of exact solves with only 325 targets. On

average, a four large selection can exactly solves 798 targets.

Selections other than the (1, 1) selection can exactly solve over

half of valid targets.

Fig. 5 Scatter plot showing the variation between combination of small

numbers.

B.Target Solvability

Now the solvability for each target will be considered. It is

possible that a certain target does not have an exact solution. In

that case, the closest solution is considered.

It is found that the target that has the least amount of selection

with which an exact solution can be found is the target 839 with

only 22 selections that has the target in their span. There are 203

out of 900 targets that are always exactly solvable on all 55 four

large selection. These targets are shown in the list below.
100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123,
124, 125, 126, 127, 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 160, 162, 167, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
180,183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204,
205, 206, 207, 208, 210, 211, 222, 223, 225, 226, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256,
258, 267, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 292, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303,
304, 305, 306, 308, 310, 322, 324, 325, 326, 328, 336, 342, 344, 346, 347, 348, 350, 352, 353, 354, 356, 357, 364,
372,375, 376, 378, 396, 397, 399, 400, 403, 404, 406, 425, 446, 450, 453, 454, 456, 475, 492, 496, 500, 504, 525,
550,575, 600, 624, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, 900, 925, 938, 950, 975

However, Countdown numbers rounds still reward non-exact

solution if no contestant found an exact one, in which case the

solution that is closest to the target wins however. The

solvability of a target in a selection strategy can be described as

the average of closest solutions for all selections. This metric

directly translates to point-scoring ability. The following

heatmap show the average of solutions closeness for each 900

targets.

Fig. 6 Heatmap of average difference of best solution across all four large

selections for each target 100-999. Targets that are always exactly solvable has

a closeness value of 0.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Closeness is measured as the difference between closest

solution to the target. Exact solution has closeness of 0.

The heatmap above shows that smaller targets often have

more exact solves. Also notice that the heatmap is divided into

four bands, separated by targets that are close to ending with 25,

50, or 75. This is what was meant by four large selection being

harder to fine tune.

Having more large numbers makes reaching higher targets

easier, but the introduction of small numbers offers minute

adjustment that widen the span of the numbers. Four large

selection can easily reach targets that are multiples of 25 or

within a small range around those numbers. Targets that are not

close to multiples of 25 still have exact solutions, but only on

slightly fewer selections.

C. Computer Simulation

A more direct way of measuring the viability of four large

selection is by simulating many countdown numbers rounds.

The simulation is done by randomly generating the target and

small numbers, and calculate the score using the best solution

possible. Prerviously, the spans of all selections are already

calculated. Scoring is done based on whether the target is within

the selection’s span or whatever closest number is in the span.

In Countdown, an exact solution gives 10 points. Inexact

solution gives 10 points subtracted by the difference between the

solution and the target. A computer simulation produced the

following result:

Fig. 7 Python code that simulates a certain amount of numbers round. The

average score obtained by picking four large is estimated to be approximately

9.9.

V. REFLECTION AND DISCUSSION

So far, this paper only discusses the solvability of four-large

selection in numbers rounds without much comparison to other

selection strategy. It is not possible to say whether four large is

specifically better than others. Perhaps more research can be

done on this matter.

Although algorithmical complexity is not the main interest in

this paper, the code that is used to produce the result is far from

perfect. There are many cases where the code can be improved

which may improve computation time. Computing the span of

55 selections has taken roughly one hour of time. Generating all

expression trees took about one minute. However, finding a

solution for a solvable puzzle takes a surprisingly reasonable

amount of time.

For example, the generation of trees produce expressions that

are not legal in the Countdown numbers round such as non-

integral division. A massive possible optimization is gained by

utilizing the commutativity of operations. Currently, the

generator simply permutes the leaf nodes, resulting in duplicate

expression where only the operands got switched around

operators such as addition. These problems does not affect the

results in any way.

Modelling arithmetical expression as binary tree turned out to

be better and is more natural. A previous attempt tries to use a

list of numbers and operators to represent an expression. To

enumerate all expressions, the members of the list are permuted.

Then the expression can be evaluated by using a stack. This

approach is abandoned halfway due to slow performance.

VI. CONCLUSION

Four-large selection is a sound strategy in Countdown

numbers round. The majority of target and selection

combination has either exact or close solutions.

Whether a solution is obvious to the human contestant is not

considered in this paper. Comparison to other selection strategy

is due.

VI. APPENDIX

All code that is used to generate the results in this paper is

hosted on a GitHub repository. The raw results data is stored

under the data subdirectory. The data can be reproduced by

running the python notebook found in the repository. At time of

writing, the repository is in the state referenced by the v1.0 tag.

The link to the repository is given below:

https://github.com/rizalkhairan/countdown

VII. ACKNOWLEDGMENT

The author would like to express my deepest gratitude to Dr.

Ir. Rinaldi, M. T., for his invaluable guidance, support, and

encouragement throughout the preparation of this paper. His

expertise, insightful feedback, and dedication to teaching have

greatly enhanced my understanding of the subject matter.

REFERENCES

[1] [Online]. Available:

https://countdownresources.wordpress.com/2018/10/05/4-large/.

[Accessed 8 January 2025].

[2] F. Amin, "Penerapan Algoritma Brute Force pada permainan Countdown

Number," 2017. [Online]. Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2016-

2017/Makalah2017/Makalah-IF2211-2017-050.pdf. [Accessed 7 January

2025].

[3] G. Hutton, "FUNCTIONAL PEARLS The countdown problem," Journal

of Functional Programming, 2002.

[4] R. P. Stanley, Enumerative combinatorics, vol. 2.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

https://github.com/rizalkhairan/countdown

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Bandung, 8 Januari 2025

Syahrizal Bani Khairan 13523063

